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Abstract

In this paper, we consider the problem of finding
a linear (binary) classifier or providing a near-
infeasibility certificate if there is none. We bring
a new perspective to addressing these two prob-
lems simultaneously in a single efficient process,
by investigating a related Bilinear Saddle Point
Problem (BSPP). More specifically, we show that
a BSPP-based approach provides either a lin-
ear classifier or an ε-infeasibility certificate. We
show that the accelerated primal-dual algorith-
m, Mirror Prox, can be used for this purpose
and achieves the best known convergence rate of
O(
√

logn
ρ(A) )(O(

√
logn
ε )), which is almost indepen-

dent of the problem size, n. Our framework also
solves kernelized and conic versions of the prob-
lem, with the same rate of convergence. We sup-
port our theoretical findings with an empirical s-
tudy on synthetic and real data, highlighting the
efficiency and numerical stability of our algorith-
m, especially on large-scale instances.

1. Introduction
One of the central tasks in supervised learning is to train a
binary classifier: Given a training data set A ∈ Rm×n of
size n, where each column Aj ∈ Rm is an instance with
label either 1 or -1; find a binary (linear) classifier that sep-
arates data into two groups based on their labels. Without
loss of generality, we assume thatA does not contain a zero
column. After reversing the sign of each negative instance
(Blum & Dunagan, 2002) (for simplicity, we still denote the
data matrix A), training a classifier is equivalent to finding
a feasible solution to the following system of homogeneous
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linear inequalities w.r.t. y ∈ Rm:

AT y > 0. (1)

We refer (1) as Linear Dual Feasibility Problem (LDFP),
and its solutions as linear classifiers or feasibility (separa-
bility) certificates. When the training data is not linearly
separable, an infeasibility (inseparability) certificate is giv-
en by a solution to the Linear Alternative Problem (LAP)
of (1):

Ax = 0,1Tx = 1, x ≥ 0, (2)

where 1 ∈ Rn denotes the vector with all coordinates equal
to 1. LDFP and LAP are Linear Feasibility Problems (LFP)
that are dual to each other: (1) is feasible if and only if (2) is
infeasible (by Gordon’s Theorem (Chvatal, 1983)). In par-
ticular, a feasible solution of one problem is an infeasibility
certificate of the other. Often, instead of seeking an exact
infeasibility certificate, it is more practical to opt for an ε-
infeasibility certificate for LDFP, i.e., finding an ε-solution
for LAP, xε, such that ‖Axε‖2 ≤ ε,1Txε = 1, xε ≥ 0.
Without loss of generality, we assume ‖Aj‖2 = 1, for al-
l j. Note that such a transformation does not change the
feasibility status of either LDFP or LAP but simplifies our
analysis.

Given that (1) and (2) are convex (in fact just linear)
optimization problems, quite a few algorithms including
polynomial-time Interior Point methods (IPMs) can be
used to solve them. Nonetheless, in real-life classification
scenarios, these problems, especially the ones with “dense”
data, e.g., “dense”Amatrices, remain challenging for IPM-
s. In these cases, each iteration of IPMs requires O(n3)
arithmetic operations (a.o.), resulting in unacceptable over-
all runtimes. As a result, algorithms with computationally
cheap iterations, i.e., first-order methods (FOMs) like gra-
dient descent, are more attractive despite their inferior rate
of convergences. In fact, the first algorithm suggested to
solve (1), the perceptron algorithm by (Rosenblatt, 1958)
is precisely from this class. This class of FOM algorithms,
including perceptron and its variants, involves only elemen-
tary operations in each iteration. The time complexity per
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iteration is dominated by simple matrix-vector multiplica-
tion, and thus it is O(mn). Due to their scalability, our
focus in this paper is also limited to this class of FOMs.

Most of the FOMs directly address either (1) or (2) sepa-
rately, or both simultaneously. Assuming that a.o. involved
in their iterations are of the same order, one can compare
the efficiency of these algorithms based on their rate of
convergence, i.e., the number of iterations needed to find
a feasible solution for LDFP or an ε-solution for LAP, The
convergence rates of these algorithms are usually measured
in terms of the parameters n,m ε, and the margin, ρ(A):

ρ(A) := max
‖u‖2=1

min
j=1,...,n

uTAj
‖Aj‖2

. (3)

For example, (Novikoff, 1962) established that the rate of
convergence of perceptron algorithm is O( 1

ρ(A)2 ). Among
these quantities, ρ(A), in fact, provides a measure of the
difficulty of solving LDFP or LAP, or equivalently of de-
termining the separability of data, A. LDFP is feasible if
ρ(A) > 0, and LAP is feasible if ρ(A) < 0 (see (Li & Ter-
laky, 2013)). The smaller its magnitude, |ρ(A)|, the harder
is to solve the corresponding problem. With our normal-
ization (‖Aj‖2 = 1 for all j), we have |ρ(A)| ≤ 1. Un-
fortunately, in real classification scenarios, |ρ(A)| is rather
tiny, so the complexity O( 1

ρ(A)2 ) of the original perceptron
algorithm seems not so promising, despite that it is com-
pletely independent of the size (n) of the problem.

In this paper, we suggest a single algorithm, which solves
(1) or (2) simultaneously by providing either a fesibility
(separability) certificate or an almost infeasibility (insepa-
rability) certificate. While doing so, our algorithm, not only
enjoys the best rate of convergence in terms of its depen-
dence on ρ(A), but also retains the simplicity of each iter-
ation. To achieve this, we circumvent dealing directly with
(1) or (2), and thus, we avoid making any assumptions on
the feasibility status of either one of them. Instead, bringing
a new perspective and a simplified analysis, we show that
by solving a related Bilinear Saddle Point Problem (BSPP)
via a primal-dual algorithm, one can obtain either a feasible
solution for LDFP or an ε-solution for LAP depending on
the feasibility status of the respective problem. To solve B-
SPP, we adopt the Mirror Prox (MP) algorithm, an acceler-
ated primal-dual FOM introduced by (Nemirovski, 2004).
While our suggested framework Mirror Prox for Feasibili-
ty Problems (MPFP) maintains the same iteration efficiency
as perceptron, i.e., O(mn) per iteration, we establish that

MP achieves a convergence rate of O(

√
log(n)

|ρ(A)| ) for LDF-

P and O(

√
log(n)

ε ) for LAP. To the best of our knowledge,
this is the first algorithm that simultaneously solves both
of these problems at these rates. Unlike perceptron algo-
rithm, the overall rate of convergence of the MP algorithm
has a very mild dependence, O(

√
log(n)), on the number

of training data. Nonetheless, O(
√

log(n)) is in fact al-
most a constant factor even for extremely large n, such as
n ∈ [1010, 1020], and thus we claim (and also empirical-
ly show) that MP has quite competitive performance in the
case of large scale classification problems. Note that such
dependency is consistent with the existing literature in the
case of LDFP. It is also strictly better (in terms of conver-
gence rates) than the recent results for LAP, because MP
has a factor of only O(

√
log(n)), whereas the competing

algorithms have a factor of O(
√
n), significantly limiting

their computational performance. We further confirm the
efficiency and scalability of our algorithms via a numeri-
cal study on both synthetic and real data. In addition to
their excellent theoretical and practical performance, our
study also revealed that MP-based algorithms are numeri-
cally more stable than the other state-of-the-art methods.

MPFP also offers great flexibility in adjusting to the geom-
etry of the problem. In particular, we show that by prop-
er customization, our framework can easily be extended to
handle two important generalizations: the kernelized feasi-
bility problems and the general conic feasibility problems.
In both of these generalizations, we maintain the same rate
of convergence as the original version while also retaining
a cheap iteration cost. The connections of classification
with saddle point problems, and the efficiency and flexi-
bility of the MP framework discussed in this paper, open
up further strikingly important possibilities for acceleration
based on randomization. Particularly, the sublinear time
behavior achieved by MP variants introduced in (Juditsky
et al., 2013) is of great interest for future research.

2. Related Work
There is an extensive literature on deterministic and s-
tochastic FOMs for solving classification problems (Cris-
tianini & Shawe-Taylor, 2000; Schölkopf & Smola, 2002;
Cotter et al., 2012) as well as the perceptron algorithm and
its variants. In this paper, we limit our focus to determin-
istic FOMs and the most relevant literature. We categorize
the representative literature into two parts in terms of the
types of certificates, e.g., solutions to LDFP and LAP, the
corresponding algorithms provide. Table 1 summarizes the
rate of convergence of these algorithms. We note that the
overall number of a.o. involved in each iteration of any one
of these algorithms is O(mn) and thus the comparison p-
resented in Table 1 is in fact meaningful.

The first category of algorithms in Table 1 assumes that
LDFP is feasible and only provides solutions for LDFP,
e.g., feasibility (separability) certificates. The original per-
ceptron (PCT) algorithm (Rosenblatt, 1958) withO( 1

ρ(A)2 )

rate of convergence is an example for this type of algo-
rithms. As observed in (Saha et al., 2011), acceleration of
perceptron algorithm via (Nesterov, 2005)’s extra gradient
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LDFP LAP ε-solution
PCT O( 1

ρ(A)2
) N/A

SPCT O(

√
log(n)

|ρ(A)| ) N/A
VN O( 1

ρ(A)2
) O(min( 1

ε2
, 1
ρ(A)2

log 1
ε
))

ISPVN O(
√
n

|ρ(A)| log
1

|ρ(A)| ) O(
√
n

max{|ρ(A)|,ε} log 1
ε
)

MPFP O(

√
log(n)

|ρ(A)| ) O(

√
log(n)

ε
)

Table 1. Summary of convergence rate of different algorithms.

based smoothing technique is possible. This technique un-
derlies the Smooth Perceptron (SPCT) algorithm suggest-
ed by (Soheili & Peña, 2012), which terminates in at most
2
√

2 log(n)

ρ(A) −1 iterations.Under the assumption that LDFP is
feasible, SPCT achieves the same theoretical iteration com-
plexity as MPFP. However, SPCT does not provide infea-
sibility (inseparability) certificates, and verifying the feasi-
bility status of LDFP is equivalent to solving LDFP.

Another vein of algorithms aims to either solve LDFP
or provide an ε-solution to LAP simultaneously, without
any assumption on their feasibility status beforehand. The
von Neumann (VN) algorithm (Dantzig, 1992), is a well-
known example of such a method. Combining the anal-
ysis of (Dantzig, 1992) and (Epelman & Freund, 2000),
one can conclude that i) if LAP is feasible, then in at
most O(min( 1

ε2 ,
1

ρ(A)2 log 1
ε )) iterations VN returns an ε-

solution; ii) if LAP is infeasible, then VN provides a feasi-
ble solution to LDFP within O( 1

ρ(A)2 ) iterations. Recent-
ly, based on SPCT and VN algorithms, (Soheili & Peña,
2013) suggested the Iterated Smooth Perceptron-Von Neu-
mann (ISPVN) algorithm. ISPVN finds a feasible solution
for LDFP within O(

√
n

|ρ(A)| log ( 1
|ρ(A)| )) iterations provid-

ed that LDFP is feasible, or otherwise, gives an ε-solution
to LAP within O(

√
n

|ρ(A)| log (1
ε )) iterations. Also, an ex-

tention of ISPVN to the kernelized setting, with the same
convergence rate, (c.f., Theorem 4 in (Ramdas & Peña,
2014)) is possible. We note that compared to ISPVN, MPF-
P achieves a significantly better performance in terms of
its dependence on both the dimension, n, of the problem
(O(
√

log(n)) as compared to O(
√
n)), and the condition

number ρ(A). On the other hand, the complexities of MPF-
P and ISPVN to find an ε-solution of LAP indicates a trade-
off between n, ρ(A) and ε so that they are not comparable.
Moreover, the improved complexity of MPFP in terms of
its dependence on n, also gives an affirmative answer to
the conjecture of (Ramdas & Peña, 2014).

3. Notation and Preliminaries
We first introduce some notation and key concepts related
to our setup and analysis. Throughout this paper, we use
Matlab notation to denote vector and matrices, i.e., [x; y]
denotes the concatenation of two column vectors x, y.

Bilinear Saddle Point Problem (BSPP) forms the backbone
of our analysis. In its most general form a BSPP is defined
as

max
y∈Y

min
x∈X

φ(x, y) (S)

where φ(x, y) = υ+ 〈a1, x〉+ 〈a2, y〉+ 〈y,Bx〉; X,Y are
nonempty convex compact sets in Euclidean spacesEx, Ey
and Z := X × Y , hence φ(x, y) : Z → R. Note that
(S) gives rise to two convex optimization problems that
are dual to each other:

Opt(P ) = minx∈X [φ(x) := maxy∈Y φ(x, y)] (P )
Opt(D) = maxy∈Y [φ(y) := minx∈X φ(x, y)] (D)

with Opt(P ) = Opt(D) = Opt, and to the variational in-
equality (v.i.), i.e., find z∗ ∈ Z, such that

〈F (z), z − z∗〉 ≥ 0 for all z ∈ Z, (4)

where F : Z 7→ Ex × Ey is the affine monotone operator
defined by

F (x, y) =

[
Fx(y) =

∂φ(x, y)

∂x
;Fy(x) = −∂φ(x, y)

∂y

]
.

It is well known that the solutions to (S) — the saddle
points of φ on X × Y — are exactly the pairs z = [x; y]
comprised of optimal solutions to problems (P ) and (D).
They are also solutions to the v.i. (4). For BSPP (S), the
accuracy of a candidate solution z = [x; y] is quantified by
the saddle point residual

εsad(z) = φ(x)− φ(y)

=
[
φ(x)− Opt(P )

]︸ ︷︷ ︸
≥0

+
[
Opt(D)− φ(y)

]︸ ︷︷ ︸
≥0

.

4. General Mirror Prox Framework
MP algorithm is quite flexible in terms of adjusting to the
geometry of the problem characterized by the domain of
BSPP (S), e.g., X,Y . The following components are stan-
dard in forming the MP setup for given domains X,Y , and
analyzing its convergence rate:

• Norm: ‖ · ‖ on the Euclidean space E where the do-
main Z = X × Y of (S) lives, along with the dual
norm ‖ζ‖∗ = max

‖z‖≤1
〈ζ, z〉.

• Distance-Generating Function (d.g.f.): ω(z), which
is convex and continuous on Z, admits continuous on
the set Zo = {z ∈ Z : ∂ω(z) 6= ∅} selection ω′(z) of
subgradient (here ∂ω(z) is a subdifferential of ω taken
at z), and is strictly convex with modulus 1 w.r.t. ‖ · ‖:

∀z′, z′′ ∈ Zo : 〈ω′(z′)−ω′(z′′), z′−z′′〉 ≥ ‖z′−z′′‖2.
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• Bregman distance: Vz(u) = ω(u)−ω(z)−〈ω′(z), u−
z〉, where z ∈ Zo and u ∈ Z.

• Prox-mapping: Given a prox center z ∈ Zo,
Proxz(ξ) = argmin

w∈Z
{〈ξ, w〉+ Vz(w)} : E → Zo.

• ω-center: zω = argmin
z∈Z

ω(z) ∈ Zo of Z.

• Ω = Ωz := max
z∈Z

Vzω (z) ≤ max
z∈Z

ω(z)−min
z∈Z

ω(z).

• Lipschitz constant: L of F from ‖·‖ to ‖·‖∗, satisfying
‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖,∀z, z′.

Based on this setup, the general template of Mirror Prox
algorithm for Feasibility Problems (MPFP) is given in Al-
gorithm 1. We refer the customizations of Algorithm 1 to
handle linear, kernelized, and conic feasibility problems as
MPLFP, MPKFP, and MPCFP, respectively.

Algorithm 1 MPFP
1: Input: ω-center zω , step size {γt} and ε.
2: Output: zt(= [xt; yt]).
3: t = 1; v1 = zω;
4: while φ(yt) ≤ 0 and εsad(zt) > ε do
5: wt = Proxvt(γtF (vt));
6: vt+1 = Proxvt(γtF (wt));

7: zt =
[∑t

s=1 γs

]−1∑t
s=1 γsws;

8: t = t+ 1;
9: end while

The standard customization of MPFP is based on associat-
ing a norm, ‖ · ‖x, and a d.g.f., ωx(·), with domain X , and
similarly ‖ · ‖y , ωy(·) with domain Y . Then, given two s-
calars αx, αy > 0, we build the d.g.f. and ω-center, zω , for
Z = X × Y as:

ω(z) = αxωx(x) + αyωy(y) and zω = [xωx ; yωy ],

where ωx(·) and ωy(·) as well as xωx and yωy are cus-
tomized based on the geometry of the domains X,Y . Al-
so, by letting ξ = [ξx; ξy], z = [x; y], our prox mapping
becomes decomposable as

Proxz(ξ) =

[
Proxωxx

(
ξx
αx

)
; Proxωyy

(
ξy
αy

)]
,

where Proxωxx (·) and Proxωyy (·) are respectively prox map-
pings w.r.t. ωx(x) in domain X and ωy(y) in domain Y .
Because of space limitation, we provide the detailed deriva-
tion of the prox-mapping operators and the rationale behind
our parameter choices, αx, αy , in the appendix.

The convergence rate of MP algorithm for solving BSPP
was established by (Nemirovski, 2004) as follows:

Theorem 1. (Nemirovski, 2004) Suppose the step sizes in
the Mirror Prox algorithm satisfy γt = L−1. Then at every

iteration t ≥ 1, the corresponding solution, zt = [xt; yt]
satisfies xt ∈ X , yt ∈ Y , and we have

φ(xt)− φ(yt) = εsad(zt) ≤
ΩL
t
.

5. Linear Feasibility Problems
In this section, we first associate a BSPP for the linear fea-
sibility problems LDFP and LAP, and establish close con-
nections between the solutions of these problems. Then,
we discuss customization of general MPFP framework, e.g.
Section 4, for simultaneously solving LDFP and LAP, and
the computational complexity of the resulting MPLFP. We
provide customization of MPFP to the kernelized and conic
feasibility problems in Section 6. Because of space limita-
tion, all of the proofs are provided in appendix.

5.1. BSPP Formulation for Linear Feasibility Problems

To address the linear feasibility problems, LDFP (1) or
LAP (2) simultaneously, we consider the BSPP:

Opt = max
y∈Bm

min
x∈∆n

yTAx, (5)

where the domains X , Y of the variables x, y are ∆n :=
{x ∈ Rn :

∑n
i=1 xi = 1, x ≥ 0}, i.e., a standard n-

dimensional simplex, and Bm := {y ∈ Rm : ‖y‖2 ≤
1}, a unit Euclidean ball in Rm, respectively. Then Z =
∆n × Bm. Also, φ(x, y) = yTAx, φ(x) = max

y∈Bm
yTAx,

φ(y) = min
x∈∆n

yTAx, and F (x, y) = [AT y;−Ax].

The connections between LDFP, LAP and BSPP, and their
solutions, play an important role in our main result given in
Theorem 3. These are explored in the next section.

5.2. Connections between LDFP/LAP and BSPP

We first establish a close connection between ρ(A) and the
objective value of BSPP (5) in Lemma 1, and then relate
solutions of BSPP (5) and LDFP/LAP in Theorem 2.

Lemma 1. (a) ρ(A) = max
‖y‖2=1

min
x∈∆n

yTAx; (b) Whenever

ρ(A) > 0, then ρ(A) = max
‖y‖2≤1

min
x∈∆n

yTAx = Opt.

Moreover, for any primal-dual algorithm solving BSPP (5),
we have the following relations:

Theorem 2. Let zt = [xt; yt] be the solution at iteration
t of a primal-dual algorithm for solving problem (5). Sup-
pose that the algorithm terminates at step t, when either
φ(yt) > 0 or εsad(zt) ≤ ε. Then we have

(a) If φ(yt) > 0, then AT yt > 0; otherwise,

(b) If εsad(zt) ≤ ε, then ‖Axt‖2 ≤ ε.
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Theorem 2 reveals that, depending on the sign of ρ(A), the
primal-dual solution pair zt = [xt; yt] for BSPP (5) indeed
corresponds to that of either LDFP or LAP. In fact, part
(a) of the theorem corresponds to the case when LDFP is
feasible, (since ρ(A) > φ(yt) > 0), and yt is a feasible
solution of LDFP; part (b) is essentially the case when xt
is an ε-solution of LAP. The merit of such a primal-dual
algorithm stated in Theorem 2 is that it can automatically
identify whether LDFP or LAP is feasible during the exe-
cution and provide the corresponding solution. As a result,
we do not need to assess the feasibility of either of LDFP
or LAP upfront, which is already as difficult as solving the
original feasibility problems.

Any primal-dual algorithm capable of solving BSPP (5)
can be customized to fit the conditions of Theorem 2, and
thus, is suitable for simultaneously solving LDFP/LAP. Yet
the convergence rates of these algorithms can significantly
differ in terms of their dependence on ρ(A). In Section
5.4, we show that Mirror Prox algorithm achieves the best
known performance in terms of ρ(A). Further generaliza-
tions of the MP algorithm to handle kernelized and conic
feasibility problems are possible as well. These generaliza-
tions retain the same rate of convergence given in Theorem
1, yet they may differ in terms of the a.o. needed for their
iterations. We discuss these in Section 6.

5.3. MPLFP: Customization of MPFP for LDFP/LAP

For LDFP and LAP, we have Z = X × Y = ∆n × Bm,
and hence we pick ωx(x) =

∑n
i=1 xi ln(xi) and ωy(y) =

1
2y
T y, which leads to, for i = 1, . . . , n and j = 1, . . . ,m

[Proxωxx (ζ)]i =
xi exp{−ζi}∑n
k=1 xk exp{−ζk}

, and

[Proxωyy (ζ)]j =

{
yj − ζj , if ‖y − ζ‖2 ≤ 1
yj−ζj
‖y−ζ‖2 , otherwise .

Therefore, each iteration of Algorithm 1, involves only the
computation of F (ξ) = [AT ξy;−Aξx], and

Proxz(γF (ξ)) =

[
Proxωxx (

γAT ξy
αx

); Proxωyy (
−γAξx
αy

)

]
.

This choice of d.g.f. leads to zω =
[
xωx ; yωy

]
where

xωx = 1
n1 ∈ Rn, and yωy = 0m, the zero vector in Rm.

We compute the associated Ω = Ωz and L following the
derivations in the appendix, and set γt = 1

L .

5.4. Convergence Analysis for MPLFP

In the specific case of linear feasibility problems LDFP and
LAP, following the derivation of αx and αy presented in
appendix, one can optimally select αx and αy to achieve
ΩL ≤

√
log(n) +

√
1/2. Hence by combining Theorems

1 and 2, we arrive at the following main result:

Theorem 3. Let the step sizes of MPFP be γt = L−1. Then

(a) When ρ(A) > 0, MPFP terminates in at most N =

ΩL
ρ(A) + 1 ≤

√
log(n)+

√
1/2

ρ(A) + 1 iterations with a fea-
sible solution to LDFP given by yN .

(b) When ρ(A) < 0, MPFP terminates in at most N =

ΩL
ε + 1 ≤

√
log(n)+

√
1/2

ε + 1 iterations with an ε-
solution for LAP given by xN .

Complexity per Iteration of MPLFP: Each iteration t
involves the following elementary computations with the
given a.o. complexity: (1) Axt, AT yt: O(mn). (2) Prox
mapping: O(m + n). (3) φ(xt) = ‖Axt‖2: O(m). (4)
φ(yt) = mini∈{1,...,n}(A

T
i yt) : O(n). Therefore, the over-

all a.o. involved in each iteration of MPLFP is O(mn),
which is the same as that of the perceptron algorithm.

6. Generalized Feasibility Problems
There are two important extensions of the basic MPF-
P framework, namely the Kernelized Feasibility Problems
(KDFP, KAP) and the Conic Feasibility Problems (CDFP,
CAP). Both of these extensions merely require customiza-
tion of the MPFP framework to the geometry of the prob-
lem by using proper representation or proper selection of
prox mappings. Hence, these can easily be handled within
the existing MPFP framework while still enjoying the same
convergence rate of MPLFP. To the best of our knowledge,

the extension of MP to the KDFP achieving O(

√
log(n)

|ρ(Ψ)| )

(or O(

√
log(n)

ε ) in the case of KAP) performance is novel
and the same performance of MP for the conic feasibility
problem (in terms of its dependence on n and ρ(A)) is far
superior to all of the other competing algorithms.

6.1. Kernelized Feasibility Problems

In the kernelized classification problems, along with the
data A, we are given, a feature map Φ(·) : Rm → F,
which maps each data point, Ai, to a new feature in the
Reproducing Kernel Hilbert Space, F = Rd. The fea-
ture map is specified implicitly via a kernel, KΦ(a, a′) :=
〈Φ(a),Φ(a′)〉, with the motivation that explicitly comput-
ing Φ(a) can be rather time consuming, but instead the
inner product computation, 〈Φ(a),Φ(a′)〉, via the kernel
KΦ(a, a′) is much easier to obtain (see (Schölkopf & Smo-
la, 2002)). Therefore, kernelized algorithms are designed
under the assumption that only “black box” access to the k-
ernel is available (i.e., our methods work for any kernel, as
long as we can compute KΦ(a, a′) efficiently). By normal-
ization, we assume that KΦ(a, a) = 1, and KΦ(a, a′) ≤ 1
for all a, a′ ∈ Rm, and in our runtime analysis, we as-
sume kernel matrix associated with data A, i.e., GΦ where
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[GΦ]i,j = KΦ(Ai, Aj), is known.

Let Q be a diagonal matrix, where Qii = 1 or − 1 is
the label of the ith data point, Ai. In order to simplify
the notation in our analysis, we work with the feature map
Ψ(Ai) = QiiΦ(Ai) and the resulting kernel is given by
K(Ai, Aj) = 〈Ψ(Ai),Ψ(Aj)〉 = 〈QiiΦ(Ai), QjjΦ(Aj)〉
which is the (i, j)-th element of the kernel matrix G :=
QTGΦQ. For notational convenience, we also let Ψ :=
[Ψ(A1), . . . ,Ψ(An)].

Thus the kernelized classification problem is equivalent to
finding a feasible solution to the following Kernelized Dual
Feasibility Problem (KDFP): yTΨ > 0.When no such so-
lution exists, an inseparability certificate is provided by an
ε-solution for the Kernelized Alternative Problem (KAP):
Ψx = 0,1Tx = 1, x ≥ 0.Therefore, one can equivalently
consider the following Kernelized BSPP:

max
y∈Bd

min
x∈∆n

yTΨx.

By a simple customization, the MPFP framework can be
generalized to solve kernelized BSPP using only black box
kernel oracle. Throughout the algorithm, in order avoid
any explicit computation involving Ψ, we keep track of t-
wo vectors xt, gt ∈ Rn. While the role of xt in MPKFP
remains the same, we use gt as a surrogate for yt. In partic-
ular, we let g0 = 0n implying y0 = Ψg0, and initialize the
algorithm with zω =

[
1
n1;0d

]
= [x0; y0]. And, in all sub-

sequent iterations, we always maintain the relation yt =
Ψgt implicitly. This is the key modification in MPKFP.
The benefit of this modification is that ΨT yt = ΨTΨgt =∑n
i=1K(Ai, Ai)(gt)i, hence we can avoid explicit com-

putations involving Ψ. In particular, at each iteration t, the
corresponding kernelized BSPP solution is given by zt =[∑t

s=1 γs

]−1∑t
s=1 γs[xt; Ψgt]. Based on zt, the corre-

sponding lower and upper bounds are given by φ(yt) =

min
i=1,...,n

(yt)
TΨ(Ai) = min

i=1,...,n

∑n
j=1(gt)jK(Aj , Ai), and

φ(xt) = ‖Ψxt‖2 =
√
K(xt, xt), using only the kernel K.

Moreover, for y = Ψg, the prox mapping computations are
given by

Proxωxx (
γΨT ξy
αx

) =
x ◦ η
xT η

,

where η =
[
exp {−γ(Gg)1

αx
}, . . . , exp {−γ(Gg)n

αx
}
]
, and ◦

is the elementwise product, and,

Proxωyy (
−γΨξx
αy

) =


Ψ(g + γξx

αy
), if‖Ψ(g + γξx

αy
)‖2 ≤ 1

Ψ(g+ γξx
αy

)

‖Ψ(g+ γξx
αy

)‖2
, otherwise

.

Note that Proxωxx (·) computation does not use Ψ, and in

Proxωyy (·), ‖Ψ(g+ γξx
αy

)‖2 =

√
K
(
g + γξx

αy
, g + γξx

αy

)
, al-

so relies only on the kernel function K. Hence it is suffi-
cient to keep only the (perhaps normalized) term, g + γξx

αy
,

after each Proxωyy (·) operation.

Complexity: (1) Per Iteration: Given K, the com-
plexity within each iteration is O(n2) due to Ggt,
K
(
g + γξx

αy
, g + γξx

αy

)
, φ(yt) and φ(xt). (2) Convergence

Rate: As the domains X = ∆n and Y = Bd remain the
same as MPLFP, MPKFP shares the same convergence rate
as the former, except that ρ(A) is replaced by ρ(Ψ).

Remark: Let (x∗, g∗) be the output of MPKFP. Then, if
the data is separable in the feature space, we use g∗ for
classification as follows: For a new testing data point, A0,
its class label is determined by the sign of (Φ(A0))TΨg∗=∑n
i=1Qii〈Φ(A0),Φ(Ai)〉g∗i =

∑n
i=1QiiKΦ(A0, Ai)g

∗
i .

Otherwise, the ε-inseparability certificate, i.e., an ε-
solution for KAP, is given by Qx∗.

6.2. Conic Feasibility Problems

The second extension we discuss is the Conic Dual Feasi-
ble Problem (CDFP) of the form

A∗y ∈ int(K∗) (6)

whereA∗ is the conjugate linear map of a linear mapA, and
K ∈ Rn is a proper (closed, convex, pointed with nonemp-
ty interior) cone with its dual cone K∗.

Note that A∗y ∈ int(K∗) is equivalent to requiring
〈x,A∗y〉 > 0 for all x ∈ K \ {0}. Let e be a vector from
int(K∗), as the selection of e depends on K, below we will
specify it separately for each K. Define ∆(K) = {x ∈ K :
〈e, x〉 = 1}, which is the base of the cone K given by the
vector e. Hence 〈x,A∗y〉 > 0 for all x ∈ K \ {0} is equiv-
alent to minx{〈x,A∗y〉 : x ∈ ∆(K)} > 0. Moreover, the
Conic Alternative Problem (CAP) is given by:

Ax = 0, 〈e, x〉 = 1, x ∈ K. (7)

Based on the same rationale of previous sections, we con-
sider the following conic version of BSPP:

max
y∈Bm

min
x∈∆(K)

yTAx. (8)

Once again, (8), analogous to (5), is a BSPP albeit with
different domains, and hence it can still be solved within
the MPFP framework, achieving the same iteration com-
plexity given in Theorem 3. The main customization of
the MPFP applied to (8) as opposed to (5) is in selecting
various algorithm parameters, and prox-mapping operators
for the corresponding domains. In particular, one needs
to specify an efficient prox-mapping operator customized
to the domain ∆(K). We present several interesting cas-
es of K, where such efficient prox-mapping onto ∆(K)
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exists. These include K = Rn+, the nonnegative orthant,

K = Ln = {x ∈ Rn : xn ≥
√
x2

1 + . . .+ x2
n−1},

the second order cone, and K = Sn+ = {X ∈ Rn×n :
X = XT , aTXa ≥ 0 ∀a ∈ Rn}, the positive semidefi-
nite cone. The basic settings of these cases as suggested in
(Nemirovski, 2004; Juditsky et al., 2013) are as follow:

Nonnegative orthant: K = K∗ = Rn+. This is precisely
the case we have addressed for linear feasibility problems
(see Section 5.3).

Second order cone: K = K∗ = Ln.

• e = [0, ..., 0, 1]T , ∆(K) = Bn−1 × {1}.

• d.g.f: ω(x) = 1
2

n−1∑
i=1

x2
i ; Ωx ≤ 1

2 with xωx =

[0, ..., 0, 1]T .
• Given x ∈ ∆(K), ξ ∈ Rn, for i = 1, . . . , n− 1,

[Proxx(ξ)]i=

{
xi − ξi, if

∑n−1
i=1 (xi − ξi)2 ≤ 1

xi−ξi∑n−1
i=1 (xi−ξi)2

, otherwise

and [Proxx(ξ)]n = 1. Note that the computational
complexity of this prox mapping is O(n) as discussed
in the MPLFP setup (see Section 5.3).

Positive semi-definite cone: K = K∗ = Sn+.
For any two symmetric matrices A,B, we let 〈A,B〉 =
Tr(AB) as the corresponding inner product.

• e = In, ∆(K) = {X ∈ Sn+ : X � 0,Tr(X) =
1}(Flat Spectrahedron).

• d.g.f: matrix entropy ω(X) = Entr(λ(X)) =∑
i λi(X) log(λi(X)), where λi(X) is the i-th eigen-

value of X and resulting ΩX ≤ 4 log(n) with xωx =
Diag( 1

n ).
• Given X ∈ Sn+, Ξ ∈ Sn, computing ProxX(Ξ) re-

duces to computing the eigenvalue decomposition of
the matrix X , which also leads to the computation of
ω′(X), and subsequent eigenvalue decomposition of
the matrix H = Ξ − ω′(X). Let H = UDiag(h)UT

be the eigenvalue decomposition ofH , where Diag(h)
stands for the diagonal matrix with diagonal ele-
ments from h. Then computing ProxX(Ξ) reduces
to constructing the matrix W = UDiag(w)UT where
w = argminz∈Rn{〈Diag(h),Diag(z)〉+ω(Diag(z)) :
Diag(z) ∈ ∆(K)}, which is identical to the com-
putation of the Prox function in the simplex setup.
The computational complexity of this prox mapping
is O(n3) per iteration due to the two singular value
decompositions (O(n3)) and simple a.o. of O(n).

Discussion of MPCFP and conic ISPVN: The MPFP
framework is quite flexible: in particular, it can be easi-
ly adjusted to handle a variety of domains Z by properly

selecting ω(·) and thus Proxz(·). Besides, for the afore-
mentioned cones, the computational cost of each iteration
of MPCFP is quite low. While ISPVN is capable of han-
dling the same conic feasibility problems, the analysis of
(Soheili & Peña, 2013; Ramdas & Peña, 2014) is based
on Euclidean d.g.f.’s, and thus the respective operations in-
volved for projections onto these domains are much more
expensive (involving sorting operations), and hence they
are inferior to the ones presented above.

7. Numerical Experiments
In this section, we conduct an empirical study on the MPFP
framework and compare it with other baseline algorithms,
using both synthetic data (for MPLFP and LAP) and re-
al data (for MPKFP). All the codes are written in Matlab
2011b, and are ran in a single-threaded fashion on a Linux
server with 6 dual core 2.8GHz CPU and 64 GB memory.

In the implementation of MPLFP or MPKFP, we select
αx, αy as described in the appendix, for a normalized ma-
trix A, i.e., ‖Ai‖2 = 1 for all i. We implemented the S-
mooth Perceptron (SPCT) (Soheili & Peña, 2012), normal-
ized Perceptron (PCT) (Ramdas & Peña, 2014) and the nor-
malized Von-Neumann (VN) algorithm (Soheili & Peña,
2012) for comparison. We also implemented the ISPVN
(Soheili & Peña, 2013) and ISNKPVN (Ramdas & Peña,
2014), but as the authors do not provide a parameter selec-
tion strategy, we did a search on the space and choose the
one with the best performance, i.e., the parameter denoted
by γ in (Soheili & Peña, 2013) (Theorem 1) was set to 2.
We note that our numerical study is based on the compari-
son of the basic implementations of all of these algorithms
including ours as well. There may be ways for small im-
provement leading better computational performance for
any one of them. Nevertheless, guided by our theoretical
findings, we do not expect any major changes in the overall
conclusions drawn.

7.1. Synthetic data

We first compare the performance of different algorithms
(non-kernelized versions) on synthetic data. In our instance
generation for LDFP, κ serves as a proxy for the condition
number ρ(A), i.e., a larger κ corresponds to a larger ρ(A)
in (3). We provide details of our instance generation for
both LDFP and LAP in the appendix.

Experimental Setup. We test the methods on a wide spec-
trum of (m,n) combinations. Given a combination, we
generate 20 instances for LDFP and 20 for LAP on which
all the methods are tested. For each method, the iteration
limit is 106 and runtime limit is 5 × 104s. When either
one of these limits is reached, we report a “TO (Timeout)”.
We empirically observe that, occasionally, SPCT suffers
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from numerical overflow, and ISPVN, frequently, falls into
a dead loop. We report a “Fail” in the table if a method fails
in all of the 20 instances. Table 2 summarizes the average
runtime for each algorithm over the instances that the algo-
rithm successfully solved. Because of space limitations, we
present the number of iterations for LDFP and for the effect
of ρ(A), and our results on LAP instances in the appendix.

Performance on LDFP. We set κ = 1 for the case LDFP,
and, by varying m,n, we generate normalized instances of
A ∈ Rm×n such that ‖Aj‖2 = 1 for all j. In all of the
instances generated, ISPVN algorithm failed, and hence
we omitted it from comparison. As indicated by Table
2, MPLFP outperforms all the other methods in terms of
runtime for any pair of (m,n). The runner-up algorithm
SPCT is obviously much slower while PCT and VN per-
form even equally worse. Moreover, as (m,n) increases,
the time savings achieved by MPLFP become more sig-
nificant. More importantly, even on the very large size
of high-dimensional data (m = 103, n = 5× 106), M-
PLFP finds a feasible solution for LDFP within 10 hours,
while the baseline methods either run out of time (PCT and
VN) or fail (SPCT and ISPVN) on large scale problems
(m = 102, n = 5 ×105). This highlights the suitability of
MPLFP for large-scale learning.

The Effect of ρ(A). We tested the performance of algo-
rithms by varying κ as a proxy for ρ(A) on instances with
(m,n) = (100, 5000) and ‖Aj‖2 = 1 for all j. For various
values of κ ∈ [1, 10] (i.e., for feasible LDFP), the runtime
of each algorithm is reported in Figure 1. It is not surpris-
ing that as κ(ρ(A)) becomes larger, which means that the
data become “more separable,” the runtime is shorter for all
of the methods. Nonetheless, MPLFP is still considerably
faster than its closest competitor in all cases.

With column-normalized matrix, A
(m,n) MPLFP SPCT PCT VN

(102, 5× 103) 1.3 4.3 98.5 127.3
(103, 5× 103) 5.5 16.2 142.2 141.5
(102, 5× 104) 112.7 455.0 TO TO
(103, 5× 104) 318.1 1301.0 TO TO
(102, 5× 105) 25506 Fail TO TO
(103, 5× 105) 22471 Fail TO TO

Table 2. Runtime (second) of all methods for LDFP (κ = 1). It-
eration limit is 106 and runtime limit is 5× 104s.

7.2. Real Data: CIFAR-10 Image Classification

We test the efficiency of MPKFP in training classifier-
s with kernel method. For comparison, we also imple-
ment the Kernelized Perceptron (KPCT), Kernelized Von-
Neumann (KVN), and ISNKVPN (Ramdas & Peña, 2014).
Our testbed is the CIFAT-10 (Krizhevsky, 2009) dataset1,

1http://www.cs.utoronto.ca/˜kriz/cifar.html
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which contains 60,000 color images in 10 mutually ex-
clusive classes, with 6,000 images per class. Each image
Ai is encoded as a m = 3072 dimensional vector.2 We
evenly pick around 1,000 images in each class to construc-
t a training set of n = 10, 000 in total, and repeat this
process to form a testing set of the same size. We train
one-vs-rest binary classifier for each class, and hence ob-
tain 10 classifiers in total. After that, each test image is
run on by all the classifiers and its predicted label cor-
responds to the one that gives the largest output value.
We choose Radial Basis Function (RBF) kernel given by
KΦ(Ai, Aj) = exp{−5.5(‖Ai −Aj‖2)}.

We run all of the algorithms, and at different pre-specified
iteration limits of N ∈{10, 32, 100, 320, 1000}, we collect
their respective solutions. We treat these solutions as the
corresponding classifiers, and benchmark their prediction
quality on the test set. Figure 2 shows how the predic-
tion error rate drops as the training iteration number per
classifier increases. It can be seen that, within the same
iteration limit, MPKFP outperforms all the other method-
s in terms of the prediction error rate. In particular, the
error rate obtained by perceptron after 1,000 iterations is
still higher than that achieved within merely 10 iterations
by MPKFP, which highlights the suitability of MPKFP for
fast classification training scenarios.

8. Conclusions
We build a framework based on BSPP to either find a bina-
ry classifier (DFP) or return a near infeasibility certificate
if there is none (AP). We adopt the accelerated primal-dual
algorithm, Mirror Prox, to solve the BSPP and achieve the
rate of convergence O(

√
logn
|ρ(A)| ) for DFP and O(

√
logn
ε ) for

AP. Our results also extend to the general kernelized and
conic problems, all of which share the same rate of conver-
gence. We further confirm the efficiency and numerical sta-
bility of our approach by a numerical study on both synthet-
ic and real data. Future work includes exploring whether
these methods can be modified to achieve sublinear time
behavior, or allow for rapid incremental retraining in active
learning scenarios.

2To achieve a lower prediction error rate, one can use other
advanced features,which is not this paper’s focus.



Saddle Points and Accelerated Perceptron Algorithms

References
Blum, Avrim and Dunagan, John. Smoothed analysis of the

perceptron algorithm for linear programming. In SODA,
pp. 905–914, 2002.

Chvatal, Vasek. Linear Programming. Macmillan, 1983.

Cotter, Andrew, Shalev-Shwartz, Shai, and Srebro, Nathan.
The kernelized stochastic batch perceptron. In ICML,
2012.

Cristianini, Nello and Shawe-Taylor, John. An Introduc-
tion to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press, 2000.

Dantzig, George Bernard. An ε-precise feasible solution
to a linear program with a convexity constraint in 1/ε2

iterations independent of problem size. Technical Report
92-5, Stanford University, 1992.

Epelman, Marina and Freund, Robert M. Condition num-
ber complexity of an elementary algorithm for comput-
ing a reliable solution of a conic linear system. Math.
Program., 88(3):451–485, 2000.
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